MEMO

JUNE 2021

QUESTION/VRAAG 10

QUESTION/VRAAG9

9.1	-/2	((//) 0 2	
9.1	$f'(x) = 9x^2$	$\checkmark f'(x) = 9x^2$	
	$3x^3 = 9x^2$		
	$3x^3 - 9x^2 = 0$		
	$3x^2(x-3) = 0$	$\checkmark x = 0$	
	x = 0 or $x = 3$	$\checkmark x = 3$	(3)
9.2.1	For f and f'	✓ answer	(1)
9.2.2	The point $(0;0)$ is: A point of inflection of f A turning point of f'	✓ f: inflection point ✓ f': turning point	(2)
9.3	f''(x) = 18x	$\checkmark f''(x) = 18x$	
	Distance = $f''(1) - f'(1)$		
	$=18(1)-9(1)^2$	✓substitution	
	= 9	✓answer	(3)
9.4	$3x^3 - 9x^2 < 0$	$\checkmark 3x^3 - 9x^2 < 0$	
	$3x^2(x-3) < 0$	✓ factors	
	but $3x^2 > 0$		
	0 3/		
	$\therefore x - 3 < 0$	✓ x < 3	
	$\therefore x < 3 \ , \ x \neq 0$	√ x ≠ 0	(4)
			[13]

QUESTION 8/VRAAG 8

8.1
$$f'(x) = mx^2 + nx + k$$

 $f'(x) = n\left(x + \frac{1}{3}\right)(x - 1)$ $f'(x) = n\left(0 + \frac{1}{3}\right)(0 - 1)$ $f'(x) = -3\left(x + \frac{1}{3}\right)(x - 1)$ $f'(x) = -3\left(x + \frac{1}{3}\right)(x - 1)$ $f'(x) = -3\left(x + \frac{1}{3}\right)(x - 1)$ $f'(x) = -3\left(x^2 - \frac{2}{3}x - \frac{1}{3}\right)$ $f'(x) = -3x^2 + 2x + 1$ $f'(x) = -3(x^2 - \frac{2}{3}x - \frac{1}{3})$ $f'(x) = -3x^2 + 2x + 1$ $f'(x) = -3(x^2 - \frac{2}{3}x - \frac{1}{3})$ $f'(x) = -3x^2 + 2x + 1$ $f'(x) = -3(x^2 - \frac{2}{3}x - \frac{1}{3})$ $f'(x) = -3(x^2 - \frac{2}{3}x - \frac{1}{3})$

8.2.1	$f(x) = -x^3 + x^2 + x + 2$		
	$f\left(-\frac{1}{3}\right) = \frac{49}{27} = 1.81$	✓ x-coordinates of the TP	
	$T.P\left(-\frac{1}{3}:\frac{49}{27}\right)$	\checkmark T.P $\left(-\frac{1}{3}; \frac{49}{27}\right)$	
	f(1) = 3		
	T.P(1; 3)	✓ T.P(1;3) (3)	

8.2.2	$f(x) = -x^3 + x^2 + x + 2$		
	$-x^3 + x^2 + x + 2 = 0$		
	$(x-2)(-x^2-x-1)=0$		
	x=2 or no solution	✓ x = 2	
	$(1:3)$ $(-\frac{1}{3}:1.81)$	✓ one <i>x</i> -intercept ✓ two turning points ✓ <i>y</i> -intercept	
		✓ shape: neg cubic	(5)
8.3.1	$a = \frac{-\frac{1}{3} + 1}{2}$		
	$=\frac{1}{2}$	✓ answer	(1)
	3 OR/OF	OR/OF	
	$f'(x) = -3x^2 + 2x + 1$	ONO	
	f''(x) = -6x + 2		
	f''(a) = -6a + 2 = 0		
	-6a = -2		
	$a=\frac{1}{3}$	✓ answer	(1)
8.3.2	$b < \frac{4}{3}$ units	$\checkmark \frac{4}{3}$ $\checkmark b < \frac{4}{3}$	
		$\checkmark b < \frac{4}{3}$	(2)
			[17]

Question 9.3

9.3.1
$$x = 1$$
 and $x = 5$

9.3.2
$$x < 1$$
 or $x > 5$